kinematically similar matrices matrix - significado y definición. Qué es kinematically similar matrices matrix
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es kinematically similar matrices matrix - definición

EQUIVALENCE RELATION BETWEEN MATRICES
Similar (linear algebra); Similar matrices; Similar matrix; Similar transformation

Matrix addition         
  • Illustration of the addition of two matrices.
NOTIONS OF SUMS FOR MATRICES IN LINEAR ALGEBRA
Direct sum (Matrix); Direct sum (matrix); Matrix subtraction; Direct sum of matrices
In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. However, there are other operations which could also be considered addition for matrices, such as the direct sum and the Kronecker sum.
Stochastic matrix         
  • [[Andrey Markov]] in 1886
MATRIX USED TO DESCRIBE THE TRANSITIONS OF A MARKOV CHAIN
Transition probability matrix; Markov transition matrix; Markov matrix; Stachastic matrix; Right stochastic matrix; Left stochastic matrix; Markov Matrices; Markov matrices; Probability matrix; Stochastic matrices; Stochastic operator
In mathematics, a stochastic matrix is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability.
Polynomial matrix         
MATRIX WHOSE ENTRIES ARE POLYNOMIALS
Characteristic matrix; Λ-matrix
In mathematics, a polynomial matrix or matrix of polynomials is a matrix whose elements are univariate or multivariate polynomials. Equivalently, a polynomial matrix is a polynomial whose coefficients are matrices.

Wikipedia

Matrix similarity

In linear algebra, two n-by-n matrices A and B are called similar if there exists an invertible n-by-n matrix P such that

Similar matrices represent the same linear map under two (possibly) different bases, with P being the change of basis matrix.

A transformation AP−1AP is called a similarity transformation or conjugation of the matrix A. In the general linear group, similarity is therefore the same as conjugacy, and similar matrices are also called conjugate; however, in a given subgroup H of the general linear group, the notion of conjugacy may be more restrictive than similarity, since it requires that P be chosen to lie in H.